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Abstract: We have predicted that difluoromethane (CH2F2) will be the highest-affinity guest for Rebek’s “tennis
ball” host1 using a new approach to multimolecule free energy calculations. The method, which we call
chemical-Monte Carlo/Molecular Dynamics (CMC/MD), was first tested by calculating the relative free energies
of solvation of a variety of molecules. Subsequently, we have used it to compare nine possible guests binding
to the “tennis ball” host and predict that CH2F2 will bind more tightly to this host than CH4, the strongest
binding guest studied to date. This prediction has been supported by standard thermodynamic integration free
energy calculations in which CH4 was mutated into CH2F2 both in solution and in the host. Our results show
the full power of such multimolecule calculationssnamely, that they can be used to rapidly calculate and rank
the relative binding free energies of many molecules from a single simulation, accelerating the discovery of
novel ligands or guests.

Introduction

Molecular recognition is the selective, strong binding of a
guest to a given host and is an essential element in biological
systems, where receptor-ligand or receptor-inhibitor interac-
tions are key to biological function. As a result, a detailed
understanding of the process of molecular recognition and an
ability to simulate it computationally could permit the efficient
design of novel, viable drug candidates.2 Thus, there are many
computational approaches to ligand (or guest) design when the
structure of the macromolecule (or host) is known. At one
extreme of computational efficiency are approaches such as
DOCK,3 which can search databases of∼100 000 potential
ligands using a very simple approach to “score” compounds
and qualitatively suggest which will bind most tightly to the
macromolecule.

At the other extreme are free energy calculation methods such
as FEP4 or thermodynamic integration (TI),5 which have proven
their utility in the detailed study of protein-ligand interactions.
These use a thermodynamic cycle6 (Figure 1) to analyze ligand
binding. These methods calculate the relative free energies of
the two ligands in the receptor (∆Ghost) and in solvent
(∆Gsolv). The difference of these two values

is the relative free energy of association,∆∆Gbind. Because
the value of∆∆Gbind defines which ligand will bind to the
receptor, it is crucial data for the design of novel inhibitors or
ligands.

Free energy simulations have been successfully applied to
calculate the relative binding free energy of protein-ligand
complexes. Well-known examples include the binding of
trimethoprim and its congeners to dihydrofolate reductase,7 the
comparison of various HIV protease inhibitors, and the relative
binding of inhibitors to thermolysin and carbonic anhydrase.8

However, these are expensive, pairwise comparisons between
ligands. The detailed simulation of the protein-ligand complex
required for just one such calculation currently requires any-
where from days to months of computer time. It is often cheaper
and faster to simply carry out the relevant experiment. This
has substantially limited the use of these methods in drug design
or drug development applications. What, then, is the role of
free energy methods in ligand design?

Free energy methods have the advantages of being thermo-
dynamically rigorous and capable of fine distinctions between
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Figure 1. Thermodynamic cycle for calculating the relative free
energies (∆∆Gbind) for two ligands binding to a common receptor.
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ligands (∆G < 1 kcal/mol) in favorable cases, so long as
accurate potential functions are used.9 However, this accuracy
is not without a pricesthese calculations are too slow for
discovery of novel ligands. Lead discovery requires consider-
ation and comparison of tens of thousands of compounds, a
computationally prohibitive task using standard free energy
methods.

In our opinion, the most efficient way to proceed in ligand
design is to use a filtering strategy, where one uses rapid
methods such as DOCK to first suggest 10-100 possible leads
from hundred thousand- or million-compound libraries. These
compounds may then be examined by methods intermediate in
accuracy and detail before resorting to traditional free energy
calculations. One cannot realistically do full free energy
calculations on many ligands because these methods are
particularly inefficient when evaluating a family of related
ligands. This is due to the pairwise comparison intrinsic to
standard free energy calculationssto assess the relative free
energies of ligands A, B, C, and D, at least three calculations
must be carried out: one to compare A and B, one to compare
B and C, and finally one to compare C and D. Since the lead
refinement process often involves choosing between many
possible modifications of a lead compound (each of which may
involve a significant amount of synthetic chemistry), compu-
tational methods are needed that retain as much as possible of
the accuracy of free energy calculations but have the ability to
compare many ligands at a time.

Such “multimolecule” free energy methods are actively being
developed by many groups. Most notably, Kong and Brooks10

have introduced “λ-dynamics”: by expanding the extended
Hamiltonian formalism11,12from one to severalλ variables, they
have calculated relative solvent-state free energies for many
species from a single simulation and shown how expansion of
theλ-variable space can accelerate the convergence of traditional
pairwise free energy calculations. The use of biasing potentials
to improve the convergence of such simulations is also discussed
in a general way. Other multimolecule approaches include the
calculation of relative free energies for many compounds by
perturbation expansion from a single reference state, recently
explored by Liu et al.13 as well as Radmer and Kollman.14

In this paper we present a new multimolecule free energy
method and apply it to calculate the relative binding free
energies for a series of small molecules binding to a rigid organic
host. Specifically, we explored the binding of methane,
ethylene, and various halomethanes to the “tennis ball” dimer
described by Branda et al.1 Our chemical Monte Carlo-
Molecular Dynamics method combines molecular dynamics to
sample coordinate space with Metropolis Monte Carlo15 to
sample among various chemical states of the system. The use
of Monte Carlo sampling in “chemical space” was originally
suggested by Bennett16 and first used in a pairwise calculation
of ion solvation by Tidor.17 In the CMC/MD method, the
solvation free energy of each ligand can also be included as a

biasing potential in the Monte Carlo step to focus sampling
toward the best binding ligands.

We have chosen the “tennis ball” host-guest system because
it is experimentally well characterized and known to bind a range
of ligands with varying affinity. It is also a case where
theoretical calculations have complemented experiment. Specif-
ically, Branda et al.1 were unable to detect the binding of
tetrafluoromethane (CF4) in their initial report. Free energy
calculations carried out by Fox et al.18 suggested that CF4 should
have an affinity for this host intermediate between CH4 and
CHCl3, the best and worst known guests. This prediction was
subsequently confirmed by experiment. While the “tennis ball”
had been shown to bind methane, fluoromethane, ethylene,
dichloromethane, and chloroform, we were interested in testing
the entire range of fluoro- and chloro-substituted methanes
binding to this host, an intractable series of calculations with
the methods used previously. In light of the initial synergy
between theory and experiment, we were excited to find our
calculation predicts difluoromethane (CH2F2) to be an even
better guest than methane.

CMC/MD is faster than the analogous thermodynamic
integration calculations previously carried out by Fox et al.,18

and it converges to the same relative free energies for each
ligand. In addition, our method rapidly orders the ligands
according to their binding free energies, well before the precise
free energy values are completely converged. A similar effect
is observed with bothλ-dynamics and Still’s recent work on
enantioselectivity.19 All of the above properties make these
multimolecule methods ideal for quickly comparing a family
of related ligands and assessing their binding to a particular
receptor. As such, we feel this chemical-MC/MD method will
be useful in lead optimization and refinement, especially in
comparison to traditional free energy methods.

Methods

The chemical Monte Carlo method is based on a derivation
by Bennett.16 This derivation shows how a Monte Carlo
calculation can be used to determine the relative free energy of
two chemical “states” (two solutes, two ligands, etc.) by a
combination of Cartesian and chemical Monte Carlo steps. It
is straightforward to generalize this formalism to the case of
multiple chemical “states”. The derivation and generalization
are presented in Appendix I, along with a discussion of the
similarities and differences between CMC/MD and other
methods. It should be noted that Kong and Brooks’λ-dynamics
derivation10 is sufficiently general that it can also be extended
to describe the CMC/MD approach, though both were developed
independently.

Previously, combinations of Monte Carlo and molecular
dynamics have primarily been used to improve the sampling of
physical configurations. Notable examples are the hybrid Monte
Carlo technique20 and the MC(JBW)/SD method.21 In the
hybrid Monte Carlo method, molecular dynamics is used to
generate “trial move” configurations which are then evaluated
with Metropolis Monte Carlo criteria to generate a thermody-
namic ensemble. The MC(JBW)/SD method uses Monte Carlo
steps to “jump” between conformational minima that are
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separated by free energy barriers, thus allowing a single
simulation to explore a much broader set of configurations.
These methods differ from the chemical-MC/MD approach
described here in that they use a constant potential function. In
contrast, the chemical-MC/MD method uses Monte Carlo steps
to adjust the potential function, thereby representing the
interaction of different ligands with the receptor. Instead of
“jumping” between different Cartesian configurations and
generating a Boltzmann ensemble of these configurations, we
are essentially “jumping” between different ligands and generat-
ing a “Boltzmann ensemble” of ligands. In this respect, it is
similar to Tidor’s17 approach; however, we have extended this
type of method to multiple, complex ligands in order to make
it useful in the context of ligand design.

The use of Monte Carlo sampling between discrete chemical
states allows us to further increase the utility of the chemical-
MC/MD method. Specifically, there are two properties of
interest when comparing ligandssfirst, a rank order of the best
binders, and second, the value of∆∆Gbind for each ligand.
We want to find an optimal route to determine the relative free
energy of binding,∆∆Gbind, for our ligands of interest.

Binding represents a balance between the free energies of
the bound and free (solvated) states of the ligand. If we want
to find the “best binders”, our calculation must take into account
the contributions of both these states. Drawing inspiration (and
precedent) from the commonly used Monte Carlo technique of
“umbrella sampling”,22 we can directly determine∆∆Gbind
from our chemical-MC/MD simulation if we include the relative
solvation free energies (∆Gsolv) as a “solvation offset” to the
energy of each state. In theλ-dynamics derivation of Kong
and Brooks,10 provisions are also made for the inclusion of a
biasing potential associated with eachλ-coordinate, though in
the context of enhancing simulation convergence.

Equation 9 shows that if we know or can approximate
∆Gsolv, we can include it as a biasing potential in our chemical-
MC/MD simulation of the bound state. By its nature, the
chemical-MC/MD method focuses sampling on the compounds
with the most favorable free energy in a given environment. In
solvent, these are the compounds with the most favorable
solvation free energies. In the protein or host, these are the
ligands with the most favorable∆Ghost. However, the quantity
of interest is∆∆Gbind, not∆Gsolv or∆Ghost. Including the
corresponding∆Ghost for each ligand as a biasing potential in
a simulation of the bound state means that the calculated value
is ∆∆Gbind, and the simulation spends most of its time sampling
the “best binders’ rather than the ligands with the lowest free
energy in the bound state (lowest∆Ghost). The net result is a
rapid rank-order determination of the best binding ligands and
a gradually converging determination of∆∆Gbind. A useful
physical analogy suggested by Kong and Brooks10 is that this
process of finding the “best binder” truly corresponds to a
competitive binding experiment in the laboratory, where many
ligands present in solution are competing for a single binding
site on a protein or host.

Computational Details

The chemical-MC/MD algorithm was implemented as part
of the AMBER software package.23 The SANDER molecular
dynamics program was modified to carry out the Metropolis
Monte Carlo sampling and collect, record, and report the
necessary data.

During a simulation, all the solutes or ligands of interest are
simultaneously included in the simulated system and their
interactions calculated at every time step. However, the
potential energy function is masked to reflect the chemical state
of the system. At every time step, there is a single “real” ligand
and the remainder are “ghosts”. The “real” ligand interacts fully
with the surroundings. The ghost ligands’ interactions are
calculated and recorded but do not affect the system energy or
dynamics. In particular, the ghost ligands do not exert any
forces on the surroundings. Also, no ligand ever interacts with
another ligand. In effect, the “ghost” ligands are decoupled
from the system surroundings. This is analogous to the “dual
topology” approach to free energy calculations24 except that we
now have an “n-tuple topology” containing each of ourn
chemical species.

In the interests of simplicity and practicality, we have made
a few approximations. First, the abrupt jumps between ligands
mean that a newly “real” ligand does not have velocities
appropriate for its surroundings. As a consequence, we
randomly reassign the velocities of every particle in the
simulation from a Maxwell-Boltzmann distribution whenever
a Monte Carlo move occurs (Anderson temperature coupling).25

In addition, a single system temperature is calculated that
includes the kinetic energy of every particle in the simulation,
including the ghosts. This temperature is maintained at 300 K
using a Berendsen temperature coupling scheme.26 The error
due to these approximations is small (there are<40 ghost
particles in our 9-solute, 3377 atom simulation) and should be
expected to cancel when considering the relative free energies
of similar ligands from a single calculation.

The system is also maintained at constant pressure by a
Berendsen algorithm.26 In contrast to the temperature, the virial
(and the pressure) only include interactions with the “real” ligand
and the surroundings. We are presently evaluating alternative
temperature- and pressure-coupling algorithms to improve the
rigor of our calculations.

One issue in these calculations is ensuring that the ghosts
sample configurations that are appropriate for the current
configuration of the surrounding “context”. If the ghosts are
completely decoupled from the “context”, sampling of ghost
configurations is essentially random. This results in poor
acceptance ratios for the Monte Carlo steps, since random ghost
movements often generate unrealistic situations where ghost
atoms overlap atoms of the “context”. We have addressed this
problem in two ways. First, all of the ligands are restrained to
one another by harmonic potentials between their centers of
mass. Second, the ghosts are allowed to feel the influence of
the “context” but not vice versa. These “ghost forces” mean
that atoms of the context exert forces on the ghosts but the ghosts
remain invisible to the context. Ideally, we would correct the
observed free energies for these biases, but we assume that they
will cancel for comparisons of similar ligands from a single
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simulation. The net result of these approximations is a
substantial improvement in the acceptance ratios for Monte
Carlo steps, enhancing the efficiency of the calculation.

The chemical-MC/MD protocol is as follows. The system
(“context” plus “real” and “ghost” ligands) is simulated for
several steps (usually 1 ps) of molecular dynamics. This
generates a novel configuration of the context, the real ligand,
and the ghosts. Based on this configuration, the energies of
each ligand are evaluated. A ligand is chosen at random (the
“trial move”). The change in energy is evaluated, and the trial
move is accepted or rejected based on Metropolis Monte Carlo
criteria.15

After the trial move is accepted or rejected, the outcome is
recorded and molecular dynamics resumes, again simulating the
interactions of the “context” and the currently “real” ligand.
This cycle of coupled Monte Carlo and molecular dynamics
steps is continued until the probability of observing each ligand
converges.

While this approach is sufficient, it discards a great deal of
information about each ligand. Specifically, we record the
interaction energies of each ligand before selecting one for a
Monte Carlo trial move. This history provides information
about the “quality” of the Monte Carlo sampling and also allows
us to estimate the free energy for poorly- or under-sampled
states.

If an infinite number of Metropolis Monte Carlo steps were
carried out on a given Cartesian configuration of the simulated
system, the probabilities of each ligand would converge to the
Boltzmann distribution for that configuration. That is,

Since we only carry out one Monte Carlo step for each
Cartesian configuration considered, we record this “Boltzmann”
probability data over the course of our simulation as a check
on our Monte Carlo sampling. The Boltzmann-basedP(ligand)
values are averaged over every Monte Carlo step to yield an
optimum probability P(ligand) for the simulation. In our
converged simulations, these Boltzmann-based probabilities
mirror the observed Monte Carlo history for each state.

Simulation Specifics

1. Solvation. Relative free energies of solvation were
calculated for solutes within a bath of TIP3P water molecules.27

The parameters for each pair or family of compounds (including
charges and geometries) were taken directly from the literature
references to facilitate comparison between the chemical-MC/
MD and FEP or TI calculations. Specifically the parameters
for bromide and chloride were taken from Tidor’s previously
mentioned work.17 The anisole and benzene data were from
Kuyper et al.,28 and Sun and Kollman’s work on hydrophobic
solvation provided the parameters for methane, ethane, and

propane.29 The charges, nonbonded parameters, and geometries
for the substituted methanes were taken from Carlson et al.,30

supplemented by bond, angle, and torsional constants from the
Cornell et al. AMBER force field.31 In each case, the simulation
system consisted of all of the solutes of interest, plus anywhere
from 500 to 800 TIP3P water molecules, simulated in a
rectangular periodic box.

A modified version of the SANDER module of AMBER 4.1
was used for the molecular dynamics calculation.32 A leapfrog
integrator was used with a 2 fstime step. Metropolis Monte
Carlo steps were evaluated every 1 ps (500 MD steps) for most
systems. The system temperature was maintained at 300 K by
the previously described Andersen/Berendsen temperature cou-
pling. The Andersen temperature coupling reassigned the
velocities of every atom in the system in sync with the Monte
Carlo steps (every 500 steps/1 ps). The pressure was kept at 1
atm with the Berendsen coupling scheme, using the compress-
ibility of bulk water (44.6× 10-6 /bar) and a coupling constant
of 0.2 ps-1. An 8 Å cutoff was used for the nonbonded
interactions, with updates to the pairlist made every 10 or 20
dynamics steps. All bonds were constrained to their equilibrium
lengths using the SHAKE algorithm.33

Since the ghosts are partially or completely decoupled from
the rest of the system, something is necessary to keep them
from drifting out of the vicinity of the binding cavity. For our
initial test calculations, we simply constrained the analogous
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Figure 2. Population (a) and∆Ghost (b) data for the unbiased four-
guest calculation. (a) shows the relative populations of each ligand in
the simulation. (b) shows these population data converted to∆Ghost
free energies relative to CH4. Solid circles show data for CH3F; solid
squares are data for CF4; solid diamonds are the data for CHCl3; and
CH4 is shown in part (a) as the heavy line. The calculation is dominated
by CH3F, the guest with the most favorable∆Ghost.
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atoms (the carbon of methane and one carbon of ethane or the
phenyl rings of anisole and benzene, for example) of each solute
to overlap through a nonphysical “bond” of length 0.0 Å.

Each set of solutes was solvated and then equilibrated at 300
K for at least 100 ps of dynamics during which time no Monte
Carlo moves were made. After the equilibration phase, Monte
Carlo steps were initiated and the free energy calculation begun.
Total simulation length for these calculations was anywhere
from several picoseconds to 2.4 ns. Standard deviations were
calculated for converged calculations by dividing the statistics
from the total simulation into 4 to 8 bins depending on the
simulation length and calculating a mean and standard deviation
over all the bins.

2. Binding. For our binding free energy calculations, we
studied the “tennis ball” host-guest system synthesized and
characterized by Branda et al.1 The host and solvent parameters
were the same as described by Fox et al.18 This prior calculation
also provided parameters for methane, chloroform, and tet-
rafluoromethane. Charges and parameters for fluoromethane
were supplied by Reyes.34 The values for chloromethane and
dichloromethane were based on the chloroform parameters and
tested as part of a new AMBER parametrization for organic
solvents by Fox.35 Ethylene parameters were developed by
using default parameters for sp2 carbon and associated hydrogen
from the Cornell force field. All charges were determined using
the RESP procedure to fit charges to electrostatic potentials from
ab initio Hartree-Fock calculations using a 6-31G* basis set.36

In this “tennis ball” calculation, the simulation system
consisted of 2 host molecules, 631 rigid chloroform solvent
molecules, and either 4 (methane, fluoromethane, tetrafluo-
romethane, chloroform) or 9 (methane, ethylene, fluoromethane,

difluoromethane, trifluoromethane, tetrafluoromethane, chlo-
romethane, dichloromethane, and chloroform) ligands. In
contrast to the solvent, all ligands were treated as having flexible
angles and torsions but rigid bonds. The total system size was
either 3356 or 3377 atoms and was simulated in a rectangular
periodic box approximately 46 Å on a side. Figure 5 shows a
stereoview of the “tennis ball” dimer with a representative
configuration of difluoromethane in the binding cavity.

Again, the SANDER module of AMBER was used for the
molecular dynamics calculation. A leapfrog integrator was used
with a 2 fs time step. Metropolis Monte Carlo steps were
evaluated every 1 ps (500 MD steps) for most systems. The

(34) Reyes, C.1997.
(35) Fox, T. and Kollman, P.J. Phys. Chem.Submitted for publication.
(36) Bayly, C. I.J. Phys. Chem.1993, 97, 10260-10280.

Figure 3. Population (a) and ∆∆Gbind (b) data for the “solvation
offset” four-guest calculation. (a) shows the relative populations of each
ligand in the simulation. (b) shows these population data converted to
∆∆Gbind free energies relative to CH4. Solid circles show data for
CH3F; solid squares are data for CF4; solid diamonds are the data for
CHCl3; and CH4 is shown in part (a) as the heavy line. By including
∆Gsolv as a “solvation offset” to the Monte Carlo sampling, the
calculation is now dominated by CH4, the guest with the most favorable
∆∆Gbind.

Figure 4. Population (a) and ∆∆Gbind (b) data for the “solvation
offset” nine-guest calculation. (a) shows the relative populations of
each ligand in the simulation. (b) shows these population data converted
to ∆∆Gbind free energies relative to CH4. Again, solid circles show
data for CH3F; solid squares are data for CF4; solid diamonds are the
data for CHCl3; and CH4 is shown in part (a) as the heavy line. In
addition, data for H2CCH2 are indicated with open triangles pointing
up, data for CH2F2 with stars, CHF3 with solid triangles pointing down,
CH3Cl with plus signs and CH2Cl2 with X marks. These∆∆Gbind
data are clearly not converged, but the calculation readily and rapidly
determines the best (CH2F2) and worst (CHCl3) guests for this host.

Figure 5. Single molecular dynamics snapshot of the “tennis ball”
binding CH2F2 from the nine-guest calculation. The two halves of the
tennis ball are drawn in black, and CH2F2 is shown in gray with both
fluorines colored black. Each fluorine fits neatly into one of the major
gaps between host monomers, with little strain of the host or guest
molecules. Chloroform solvent molecules have been omitted for clarity.
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system temperature was maintained at 300 K by the previously
described Andersen/Berendsen temperature coupling. The
Andersen temperature coupling reassigned the velocities of every
atom in the system in sync with the Monte Carlo steps (every
500 steps/1 ps). The pressure was kept at 1 atm with the
Berendsen coupling scheme, using the compressibility of bulk
chloroform (108.60× 10-6 /bar) and a coupling constant of
0.2 ps-1. A 12 Å cutoff was used for the nonbonded
interactions, with the pairlist update every 25 dynamics steps.
A correction for the cutoff was included in the system energy
and pressure.37 All bonds were constrained to their equilibrium
lengths using the SHAKE algorithm.33 Aside from the chemical
Monte Carlo steps and the Anderson temperature coupling, the
dynamics simulation protocol is identical to that used by Fox
et al. for thermodynamic integration calculations.

Since the ghosts are partially or completely decoupled from
the rest of the system, something is necessary to keep them
from drifting out of the vicinity of the binding cavity. We chose
to constrain the center of geometry of each ligand to that of
one other ligand using a flat-well restraint. This restraint was
used with a force constant of 500 kcal/mol and distances r1)
1.0 Å and r2) 1.5 Å. Since the purpose of the restraints was
merely to keep the ligands in the vicinity of the binding cavity,
the restraint energy was not included in the Monte Carlo
calculation. Regardless, since this restraint is identical for each
ligand, its contribution to the relative free energy of any two
ligands largely cancels. The sum of the average restraint energy
for the eight ghosts in our nine guest simulation was less than
1.0 kcal/mol, and we found that inclusion of the “ghost forces”
substantially reduced the restraint energy while improving the
sampling. Thus, it is highly unlikely that the restraint energy
will differentially affect the calculated free energies for the
different guests. This is further supported by the results of our
four guest simulations, where the order of free energies is
completely consistent with full TI calculations. In the future,
it may be more appropriate to harmonically constrain each ligand
to the center of the binding cavity, an approach that would
permit analytic correction of the restraint contribution to the
free energy, as outlined by Wang and Hermans,38 but this idea
would also be limited to relatively simple ligands and binding
geometries.

Total simulation length for our binding free energy calcula-
tions was either 400 or 800 ps. This should be contrasted with
the equivalent TI calculations, which required 200-800 ps to
calculate∆Ghost for a single pair of ligands.18

The relative free energies of solvation in chloroform for each
of our ligands were calculated using the GIBBS module of
AMBER 4.1 and a simulation protocol similar to that described
by Fox et al. We used the same general methodology, but
instead of dividing our thermodynamic integration (TI) calcula-
tion into 101 windows of 3 ps each, we found better results
from a simulation protocol of 26 larger windows each 12 ps in
length. Improved convergence of the free energy value
calculated for each window was seen, and the total free energy
values were analogous to those determined by Fox and Reyes.
Our solvation free energy data are shown in Table 1 as the
average free energy for forward and reverse calculations plus
or minus the hysteresis between the two runs.

Results

1. Solvation. Before applying CMC/MD to a new problem,
we first tested it by calculating the relative free energies of

solvation in water for several families of compounds that had
previously been studied by TI or FEP calculations. These results
are presented in Table 2, along with the corresponding free
energy data from the literature for comparison. While the data
are not converged for every family of compounds studied, the
CMC/MD method does a good job of determining the rank order
and magnitude of the solvation free energies in each case. The
relative solvation of bromide and chloride ion was studied by
Tidor with the hybrid MC/MD method described previously,
and our results are in reasonable agreement with his calculations.
More difficult tests are the comparisons of methane versus
ethane and anisole versus benzene. In particular, the comparison
of anisole and benzene is significant because the steric difference
between the two compounds is relatively large, yet our method
gives a reasonable estimate of the free energy difference.

After these pairwise comparisons, we studied two families
of compounds. Methane, ethane, and propane were studied in
a single simulation that yielded quite accurate free energy
estimates for all three compounds with a reasonable computa-
tional cost. Methanol and the substituted methanes formed the
other family of compounds studied. They cover a broad range
of polarity and free energy, yet our method rapidly gets the
correct rank order and order of magnitude of the relative free
energies of solvation. This latter set of molecules had been

(37) Allen, M. P., Tildesley, D. J.Computer Simulations of Liquids.;
Oxford University Press: Oxford, 1987.

(38) Wang, L.; Hermans, J.J. Am. Chem. Soc.1997, 119, 2707-2714.

Table 1: Relative Free Energies of Solvation in Chloroform
Calculated by Thermodynamic Integration

ligand
∆Gsolv (CH4 f ligand)

kcal/mol note(s)

H2CCH2 -0.82( 0.01
CH3F -1.32( 0.01 a
CH2F2 -1.44( 0.1
CHF3 -1.31( 0.01
CF4 -0.57( 0.04 b
CH3Cl -2.42( 0.01
CH2Cl2 -3.31( 0.25
CHCl3 -3.91( 0.20 b

a Value calculated by Reyes.34 bValue calculated by Fox, et al.18

Table 2. Calculated and Reference Small Molecule∆∆Gsolv
Valuesa

system
ref ∆Gsolv
(kcal/mol)

calcd∆Gsolv
(kcal/mol)

time
(ps)

methane-methane 0 0.00 5
bromide-chloride -3.22 -2.75 1000

[1000]
methane-ethane 0.15( 0.07 0.03 200

(-0.17) [1200]
anisole-benzene 0.90 0.99( 0.48 1000

(1.1-1.6) [∼100]
methane, ethane and propane
methane-ethane 0.15( 0.07 0.03( 0.07 1600
ethane-propane 0.18( 0.09 0.03( 0.10 [2400]

(0.12)
methanol and substituted

methanes
methanol-H3CCN -0.1( 0.2 0.73 400

(1.2) [∼5000]
methanol-H3CSH 4.6( 0.1 2.95

(3.8)
methanol-ethane 7.9( 0.2 4.37

(6.9)

a Reference values are from free energy perturbation calculations
(no parentheses) or experiment (parentheses). Calculated values are from
simulations using the chemical-MC/MD method( 1 standard deviation.
Simulation times are the total amount used to calculate∆Gsolv. Times
in brackets are the simulation times for the reference calculation. All
references are free energy perturbation calculations that include
secondary references for the experimental values. Parameters for each
system are taken from the references in question to facilitate direct
comparison between the computational methods.
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studied by Kong and Brooks10 using λ-dynamics, so it was
appropriate to show that our procedure could also appropriately
rank the free energies of solvation of these molecules.

2. Binding. Once we had achieved these promising results
on relative free energies of solvation, we then applied the CMC/
MD method to study the binding of four guests to the “tennis
ball” host. The guests chosen were those previously studied
by Fox et al. (CH4, CF4, CHCl3) and Reyes (CH3F), so that
thermodynamic integration data was readily available for
comparison. As an initial test, we did not include the solvation
offset in our calculation. The results of this determination of
∆Ghost are shown in Figure 2. Figure 2a shows the relative
populations of each ligand in the host accumulated over a 400
ps calculation. These data are converted into free energies
relative to methane in Figure 2b. Clearly, our method rapidly
indicates that CH3F is the most favorably bound ligand.
However, this calculation does not include the solvation free
energies.

By including the solvation free energies as offsets to our
Monte Carlo sampling, we can directly determine∆∆Gbind,
as shown in Figure 3. This 1 ns calculation is now dominated
by CH4 instead of CH3F, in good agreement with the actual
relative binding free energies (∆∆Gbind). This is one of the
major strengths of our methodsmost of the simulation time is
spent sampling the ligands with favorable binding free energies.
The calculation thus rapidly focuses on the real compounds of
interest. In addition, the rank order of binding is rapidly
determined (Figure 3a). Our calculation shows that guests are
preferred in the order CH4 > CH3F > CF4 > CHCl3, as
observed experimentally. Extended calculations converge to
well-defined values of the binding free energy (Figure 3b). Our
calculated values (Table 3) are in good agreement with both
experimental data and earlier free energy calculations.

We subsequently decided to apply our method in a predictive
fashion to a simulation that included nine guests. We chose
all of the guests that had been observed experimentally (CH4,
H2CCH2, CH3F, CF4, CH2Cl2, CHCl3) as well as the remaining
fluoromethanes (CH2F2, CHF3) and chloromethane (CH3Cl). We
did not include carbon tetrachloride (CCl4), since we expected
it to be even less favorably bound than chloroform, the worst
guest observed. Using the relative solvation free energy data
from Table 1, we carried out a single 800 ps simulation on this
family of compounds. The population and free energy data are
shown in Figure 4. The data for the nine-guest case are
substantially less well converged than the simpler four-guest
calculation, but several results are clear. Most importantly, the
calculation quickly shows that difluoromethane is clearly the
best binding compound and chloroform the worst. Our data
also agree with Branda et al.1 that methane and ethylene are
approximately equally well bound by this host and that CH2Cl2
is preferred to CHCl3. The predicted rank order from our
calculation is CH2F2 . (H2CCH2, CF4, CH3F, CH3Cl, CH4,

CHF3) > CH2Cl2 . CHCl3. However, we do not think these
data are perfectly converged. Particularly, we are most confi-
dent about the prediction of the best- and worst-binding
compounds and less certain of the ordering of “intermediate”
binders. Still, the utility of this method in rapidly sorting the
compounds by approximate binding free energy is clear.

Since the CMC/MD calculation strongly suggests that CH2F2

is the best guest for the “tennis ball”, we decided to test this
prediction with a thermodynamic integration calculation. Using
a protocol identical to that used for the calculation of solvation
free energies in chloroform and similar to that previously used
to calculate∆Ghost for other guests binding to this host, we
perturbed methane to difluoromethane in the cavity of the “tennis
ball”. The calculated∆Ghost was-1.88 ( 0.03 kcal/mol;
subtracting the previously calculated∆Gsolv of -1.44 kcal/
mol yields the result that difluoromethane is preferred in this
host by-0.44 kcal/mol. This is in good agreement with our
chemical-MC/MD estimate of-0.76 kcal/mol and provides a
strong internal validation of our new method. We examined
the complex of difluoromethane bound to the host dimer in detail
in order to understand the structural basis for its affinity. Figure
5 shows a representative configuration of the complex. The
guest is slightly off-center in the host cavity and is oriented so
that each fluorine projects toward one of the gaps between the
two halves of the host. This arrangement appears to maximize
the favorable van der Waals contacts between guest and host
without straining the guest, either host monomer, or any
intermonomer hydrogen bonds. Energy minimization and
analysis of the electrostatic and van der Waals interactions of
the complex in vacuo support this conclusion.

Comparison of the minimized CH4/host and CH2F2/host
complexes leads to an interaction energy difference of∼4 kcal/
mol favoring CH2F2. Of this difference, 3.5 kcal/mol is due to
van der Waals energy and 0.5 kcal/mol from electrostatic
interactions. We can include the solvation free energy of these
two guests in a qualitative way using the data in Table 1: CF4

is more favorably solvated than CH4 by ∼0.6 kcal/mol,
suggesting that each fluorine yields 0.6/4) 0.15 kcal/mol
solvation due to van der Waals interactions with the chloroform
solvent. Thus, the∼1.4 kcal/mol improved solvation of CH2F2

relative to CH4 has a∼1 kcal/mol contribution from electrostatic
energies, which makes sense given the dipolar character of
CH2F2 and the nonpolar nature of methane. Comparing these
solvation free energies with the energy minimization results
suggests that the host’s preference for CH2F2 is due to van der
Waals interactions, since the favorable electrostatic contribution
for CH2F2 versus CH4 is even larger in solution than in the
host cavity.

Of course, the above is only a qualitative analysis but is
unequivocal in the predominance of van der Waals forces. As
noted, CH2F2 can gain van der Waals attractions for its fluorines
by pointing them toward the intermonomer gaps in the hosts.

Table 3. Relative Binding Free Energies vs CH4, Four-Guest Calculationa

guest
∆Ghost
(MC)

∆Ghost
(TI)

∆Gsolv
(TI)

∆∆Gbind
(MC-TI)

∆∆Gbind
(MC-offset)

∆∆Gbind
(TI-TI)

∆∆Gbind
(expt)

CH3F -0.77 -1.14 -1.32 +0.54 +0.17 +0.17 ND
CF4 +0.20 +0.36 -0.57 +0.77 +0.41 +0.93 +2.8
CHCl3 +2.50 +4.30 -3.91 +6.41 +3.57 +8.21 +5.2

a All calculations were carried out using the parameters described in Fox et al.18 Shaded columns show chemical Monte Carlo/MD calculations
carried out in this work. Unshaded columns present experimental and thermodynamic integration data for comparison. (MC): free energy from
unbiased chemical-MC/MD calculation. (TI): Thermodynamic Integration data from Fox et al.18 and Reyes.34 (MC-TI): ∆∆Gbind calculated as
∆Ghost from unbiased chemical-MC/MD calculation-∆Gsolv from TI. (MC-offset): ∆∆Gbind calculated directly from a single chemical-MC/
MD calculation using∆Gsolv from TI as a “solvation offset”. (TI-TI): ∆∆Gbind calculated as∆Ghost from TI-∆Gsolv from TI. (expt):
Experimental binding data from Branda et al.1
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Directing the fluorines toward the aromatic ring leads to
unfavorable repulsion and strain in the host. Similarly, the
replacement of fluorines with chlorines is also disfavored, as
CH2Cl2 is seen to be less favorably bound than CH4 by both
theory and experiment. One can now also rationalize the weaker
binding of CHF3 because the geometry of the host and guest
preclude the formation of strong van der Waals interactions for
the third fluorine group.

Discussion

We have developed and applied the chemical Monte Carlo/
MD (CMC/MD) method to successfully determine the relative
binding free energies of several nonpolar guests binding to an
organic host. With sufficient sampling, our calculation yields
free energies in close agreement with previous thermodynamic
integration calculations as well as experiment (Table 2, Figure
3, etc.). Our multimolecule free energy method has a great deal
in common with the previously publishedλ-dynamics work of
Brooks and Kong,10 though it was independently derived from
theoretical work by Bennett16 and the subsequent coupled MC/
MD work of Tidor17 as well as Radmer’s work14 on other
multimolecule free energy methods.

We have also shown that the solvation free energy may be
included in the Monte Carlo stage of the calculation to focus
sampling on the most favorably bound ligands. Application of
this “solvation offset” to our four-guest calculation shifts the
predominant state from CH3F (the guest with the lowest free
energy in the bound state) to CH4 (the most favorably bound
guest). In addition, our calculations rapidly yield the observed
preference of the host for various guests (CH4 > CH3F > CF4

> CHCl3). After this paper was submitted for review, works
have appeared by both Guo et al.39 and Jarque and Tidor40 which
also demonstrate the feasibility and utility of sampling on the
∆∆Gsolv (or ∆∆Gbind) surface.

To demonstrate the real utility of multimolecule free energy
methods, we have carried out a predictive calculationsthe first
using such techniquesscomparing nine guests bound to the host.
The rank order from our calculation correlates somewhat with
that observed by Branda et al.,1 for the five guests studied
experimentally, and suggests that CH2F2 would be even more
favorably bound to the host than methane. We have tested this
prediction internally with a TI calculation that also finds CH2F2

a better guest than methane. This demonstrates the ideal
application of multimolecule methodssthey permit consider-
ation of the relative binding free energy for many more
compounds than could be studied otherwise and rapidly pick
out promising binders for further computational or experimental
study.

There are some limitations to our method. First, it is restricted
to comparisons between relatively similar ligands or at least
compounds of similar volume. Ligands with substantial steric
differences (methyl versus phenyl derivatives, for example) are
difficult to compare with the CMC/MD method, since the abrupt
jumps between states do not sample large changes in volume
well. However, we have applied our method to accurately
calculate the relative free energies of solvation of anisole and
benzene (Table 2). This change from a hydrogen to a methoxy
group gives us confidence that we can apply our method to
pharmacologically relevant changes.7 It should also be noted
that free energy calculations which involve large steric changes

are still a challenging prospect for more traditional FEP and TI
calculations as well.41,42

Furthermore, CMC/MD appears to be much more efficient
for calculating∆Ghost or∆∆Gbind than it is for calculating
∆Gsolv. The preorganized cavity of a host or protein binding
site makes for more efficient sampling than the transient, rapidly
fluctuating cavities that surround a solute in a solvent like water.
Acceptance ratios are much higher for calculations of∆Ghost
in our test system than they were for trial∆Gsolv calculations
in water. In the present study, we avoided this issue by using
∆Gsolv values from thermodynamic integration calculations.
Since we expect to eventually use our chemical-MC/MD method
to compare many ligands bound to a protein, we are exploring
alternative, less expensive methods for calculating∆Gsolv, such
as continuum solvent methods.43 In addition, several projects
are underway to use this method to compare the binding of
multiple drug molecules to protein targets, with excellent initial
results.44

Both CMC/MD andλ-dynamics10 are “multimolecule” free
energy methods. They provide the framework for rapid
comparison of the free energy of several molecules experiencing
a common environment. Kong et al.10 and Guo et al.39 have
both shown the power ofλ-dynamics in solvation free energy
calculations and in accelerating the convergence of traditional
free energy simulations. In contrast toλ-dynamics, CMC/MD
is a more approximate methodsthe rapid jumps in chemical
space permit us to save time by avoiding the simulation of
intermediate states, but also appear to require longer simulation
times to yield converged free energy statistics. Our “n-tuple
topology” approach also means that CMC/MD is more readily
extensible to comparisons between ligands of arbitrary topology,
an essential issue in drug design calculations. This is illustrated
here by our consideration not only of substituted methanes but
also ethylene as guests for the “tennis ball” host.

These multimolecule methods occupy a middle ground of
detail and accuracy in the range of computational methods that
are applied to structure-based drug design. At one extreme there
are docking and empirical scoring methods that can examine
hundreds of thousands of compounds and possibilities. Tradi-
tional free energy perturbation methods occupy the other
extreme, providing a detailed assessment of only two com-
pounds. CMC/MD andλ-dynamics both give a relatively
accurate free energy assessment for 5-10 compounds. A
simpler dynamics-based free energy estimation method (the
linear interaction approximation, or LIA) has been introduced
by Aqvist.45 Radmer and Kollman have introduced PROFEC,
a tool for optimizing ligand affinity based on extrapolations from
a single dynamics calculation.14 A similar method from Liu,
Mark, and van Gunsteren uses extrapolations from a simulation
of a single solute to estimate free energies for a range of related
compounds, with modest success.13 Given the range of methods
available, one can imagine a funneling process, where the best
compounds found by a docking method are studied in more
detail by LIA or chemical-MC/MD methods, possible modifica-
tions are suggested by PROFEC, and final lead optimization is

(39) Guo, Z.; Kong, X.; Brooks, C. L.J. Phys. Chem.Submitted for
publication.

(40) Jarque, C.; Tidor, B.J. Phys. Chem. B1997, 101, 9362-9374.

(41) Merz, K. M., Jr.; Murcko, M. A.; Kollman, P. A.J. Am. Chem.
Soc.1991, 113, 4484-4490.

(42) Daura, X.; Hunenberger, P. H.; Mark, A. E.; Querol, E.; Aviles, F.
X.; Vangunsteren, W. F.J. Am. Chem. Soc.1996, 118, 6285-6294.

(43) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.J. Am.
Chem. Soc.1990, 112, 6127-6128.

(44) Wang, L.; Eriksson, M.; Pitera, J.; Kollman, P.New Free Energy
Calculation Methods for Structure-based Drug Design and Prediction of
Protein Stability; Wang, L., Eriksson, M., Pitera, J., Kollman, P., Eds.; in
press, 1998.

(45) Aqvist, J.; Warshel, A.J. Am. Chem. Soc.1990, 112, 2860-2868.
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guided by careful CMC/MD or FEP/TI calculations. At each
stage of the process, the number of compounds studied is
whittled down from thousands to hundreds or tens or even pairs
of compounds, while the level of detail, accuracy, and compu-
tational expense per compound is simultaneously increased.

With the development and deployment of modern parallel
supercomputers and workstation clusters, we also envision a
“coarse-grained” parallel implementation of our method, where
one chemical Monte Carlo- MD calculation is run on each of
several processors. If we can compare 5-10 ligands per
processor and one “reference” ligand is common to every
processor, we can expect to compare and rank hundreds of
ligands at once. In addition, the chemical Monte Carlo method
is intrinsically suitable for more simple applications of coarse-
grained parallelism. The results from two simulations of the
same family of ligands can be added together directly to yield
improved (or more rapid) free energy estimates. This is a sharp
contrast to traditional FEP or TI calculations, where the need
to smoothly integrate along the “reaction coordinate” means that
one must either do additional preparatory simulations to divide
the task among processors46 or develop intrinsically fine-grained
algorithms.

Finally, the use of computational methods to study the ideal
guest for Rebek’s “tennis ball” host has led to an exciting
resultsthe prediction that CH2F2 would be a better guest than
CH4. Analysis of the structure and energies yielded a ratio-
nalization of this preference, based on several factors. First,
fluorine groups are of the appropriate size to fit neatly in the
intermonomer interface. The geometry of host and guest permit
only two positions on the guest to make such favorable
interactions, which may also explain some of the host’s
preference for CH2Cl2 versus CHCl3. Finally, the greater van
der Waals well depth of fluorine relative to hydrogen makes
this interaction stronger for CH2F2 than for CH4. Thus, this
study has met the fundamental requirements for any computa-
tional methodsit has qualitatively and semiquantitatively
reproduced known experimental data, made a prediction for a
new guest, and provided mechanistic and structural insight into
the origin of the increased affinity of this guest for the host.
This offers encouragement for the continued utility of CMC/
MD and other “multimolecule” free energy calculations in the
study of host-guest complexes, whether they be organic systems
such as the one described herein or biological problems such
as protein-ligand interactions.
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Appendix I

Derivation. Considern chemical states, numbered 0 through
n, described by identical coordinates (r ) but differing only in
the potential functions (Un) describing them. The free energy
difference between any two states is the ratio of their corre-
sponding configurational integrals

where such an integral has the form

Bennett showed that this ratio of configurational integrals can
be calculated by a simulation that samples various (r ) and
simultaneously carries out a special type of Metropolis Monte
Carlo move. Specifically, the Monte Carlo move does not
involve a change of coordinates (r f r ′) but instead involves a
change in potential function (Un f Um). The Metropolis
function

or more specifically

defines the acceptance probability for this potential-switching
move just as in traditional Cartesian applications of Metropolis
Monte Carlo, where

In our case, however,∆U is the change in energy involved
in switching the system from potential functionUm to Un:

For any physical configuration of the system (r ) the ac-
ceptance probabilities for any pair of potential-switching moves
(m f n andn f m) are related by

(where we have omitted the factor ofkT from the exponential
for clarity) which can be rearranged into the form

Since both potential functions apply to the same coordinate
space (r ), one can integrate both sides of the above over all
possible values of (r ), yielding eq 21

Multiplying the left side of this equation by the identityQm/
Qm and the right byQn/Qn gives eq 22:

The terms

and

are simply canonical averages in theQm and Qn ensembles,
respectively. A canonical average has the form

(46) DeBolt, S. E.; Pearlman, D. A.; Kollman, P. A.J. Comput. Chem.
1994, 15, 351-373.

Qn ) ∫e-Un(r)/kT dr (14)

M(x) ) min{1, e-x} (15)

M(∆U/kT) ) min{1, e-∆U/kT} (16)

∆U ) U(r ′) - U(r ) (17)

∆U ) Un(r ) - Um(r ) (18)

M(Un - Um)/M(Um - Un) ) e-(Un-Um) (19)

M(Un - Um) e-Um ) M(Um - Un) e-Un (20)

∫ M(Un - Um)e-Um dr ) ∫ M(Um - Un)e-Un dr (21)

Qm
Qm∫ M(Un - Um)e-Um dr ) Qn

Qn∫ M(Um - Un)e-Un dr
(22)

1
Qm∫ M(Un - Um)e-Um dr

1
Qn∫ M(Um - Un)e-Un dr

〈F(U,r)〉 )
∫ F(U,r)e-U(r) dr

Q
(23)

∆G(m f n) ) -kT ln
Qn
Qm

(13)
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so we can rearrange eq 22 to yield the ratio of interest:

The physical interpretation of the above is that a simulation
which includes potential-switching Metropolis Monte Carlo
moves in addition to some form of configurational sampling
will sample the potential statesUm andUn in proportions that
reflect the free energy differences between statesm and n.
Bennett did go on to point out that it is often more efficient to
evaluate the canonical integrals〈M(Um - Un)〉n and〈M(Un -
Um)〉m directly. However, this is only true if one knows a priori
which free energy differences (and states) are of interest.

For the multistate case where we start with many states (0...n),
the full chemical Monte Carlo process has its own advantages.
Specifically, we are interested in the relative free energies of
each state, but our primary goal is finding the states of lowest
free energy. Consequently, we do not want to waste compu-
tational time calculating detailed free energies for states that
are not of interest. In the binding free energy applications
discussed in this paper, the states of lowest free energy
correspond to the ligands that are the “best binders” for a given
receptor.

In practice, the full chemical Monte Carlo method is
implemented by adding a set of additional coordinates to the
simulated system, one for each chemical state of interest. These
coordinates (λi) are analogous to the “λ” coordinates used in
FEP and TI calculations. For a set of chemical states 0 ton,
we haveλ0 to λn. The potential function used is of the form

where (r ) includes coordinates for each chemical state of interest
plus the surrounding context (solvent, protein, or host molecule).

The λ values are also subject to two constraints; first, each
λi is either 0 or 1. Second, the sum of allλi is constrained to
be 1. The result of these two constraints is that the calculation
only simulates the end states of interest and only simulates one
at a time.

Comparison of Methods. As noted in the Introduction,
Tidor has previously presented an implementation of Bennett’s
ideas that uses molecular dynamics to sample confguration space
and Monte Carlo methods to take steps along a chemical
“reaction coordinate” between two end states.17 The “reaction
coordinate”, often calledλ typically couples the potential
functions describing the two end states in a linear fashion:

whereV is the simulated potential function and Va and Vb refer
to the potentials appropriate for end states A and B, respectively.
Both the aforementioned approach and traditional FEP or TI
methods calculate the free energy difference between states A
and B by integrating the free energy alongλ. Tidor’s method
was successfully applied to calculate a free energy difference
for two solvated ions via simulated annealing along theλ
coordinate. The use of a continuous “reaction coordinate”
means that this method has one of the limitations of traditional
free energy calculations. Namely, much time is spent simulating
nonphysical intermediate states rather than the end states of
interest. This problem is compounded by allowing stochastic
sampling along the reaction coordinate. Simulated annealing
may be necessary since the simulation may get stuck in a free

energy minimum that lies somewhere along the coordinate but
is itself a poor representative of the end states.

While it would be possible to use Monte Carlo methods for
both the chemical and Cartesian steps of the calculation, we
were interested in eventually applying our method to studies of
protein-ligand interactions. Consequently, we chose to use
molecular dynamics methods instead of Monte Carlo methods
for the sampling of configurational space. This rationale is not
only partly historical but also based on prior studies which
showed MD was a better approach than MC for configurational
sampling in proteins.47 However, Jorgensen has recently made
great strides in the application of MC techniques to proteins.48

In contrast, Monte Carlo is a better configurational sampling
tool in many simpler systems, like solutions of small mol-
ecules.49 For such systems, one could easily imagine using a
chemical-MC/MC algorithm instead of our chemical-MC/MD
approach.

To avoid the difficulties associated with “hybrid” or “in-
between” states, we chose to restrict our chemical sampling to
jumps between the end states of interest. In the formalism
presented in the Appendix

This has the advantage that we are always simulating the end
states of interest. However, the efficiency of the Monte Carlo
sampling is now highly dependent on whether the simulation
of state A samples configurations favorable for state B, or vice
versa. The results of our simulations suggest that this is not an
insurmountable problem, but its severity will be system de-
pendent, an observation supported by Radmer and Kollman’s14

work. In extreme cases, the barriers between states may be
reduced by including a few carefully chosen “hybrid” chemical
states to bridge between the end points of interest, but we have
not needed to take that approach for any of the calculations
presented here.

A further advantage of our approach is that the extraction of
relative free energies is very straightforward. The ratio of
“populations”sthe number of times each chemical state is
sampled in the calculationssis directly related to the relative
free energies of the chemical states by

This contrasts with the approaches that allow partial values
of the reaction coordinate. In the two-state case, a simulation
that has an averageλ ) 0.5 may not mean that the two end
states are in equilibrium. Instead, it may mean the free energy
minimum of the potential isλ ) 0.5. Similarly, the correct
way to extract a free energy from these calculations is not

but rather, as Mezei et al.50 noted

(47) McCammon, J. A.; Harvey, S. C.Dynamics of proteins and nucleic
acids; Cambridge University Press: Cambridge, 1987.

(48) Jones-Hertzog, D. K.; Jorgensen, William L.J. Med. Chem.1997,
40, 1539-1549.

(49) Jorgensen, W. L., Tirado-Rives, J.J. Phys. Chem.1996, 100,
14508-14513.

(50) Mezei, M.; Mehrotra, P. M.; Beveridge, D. L.J. Am. Chem. Soc.
1985, 107, 2239-2245.

Qm
Qn

)
〈M(Um - Un)〉n

〈M(Un - Um)〉m

(24)

U(r ,{λi}) ) ∑
i)1

n

λiUi(r ) (25)

V ) λ * Va + (1 - λ) * Vb (2)

∑
i)1

n

λi ) 1 andλi ) {0,1} (3)

∆G(A f B) ) -RT ln(P(B)/P(A)) (4)

∆G(0 f 1) ) -RT ln λ (5)

∆G(0 f 1) ) -RT ln(P(λ ) 1)/P(λ ) 0)) (6)
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Since only those configurations whereλ is fully representative
of a single ligand contribute to the calculated free energy, it
makes sense to avoid wasting time simulating intermediate states
if that is feasible. If intermediate states are included in the
calculation, however, one can calculate the potential of mean

force or free energy integral along the reaction coordinate(s) as
is done in a TI or FEP calculation.
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